High performance photoelectron detection window of a environmental cell for XPS solution measurement using a gas cluster ion beam

兵庫県立大学大学院 工学研究科 助教 竹内雅耶 Graduate school of engineering, University of Hyogo, Masaya Takeuchi

要旨

近年、生化学・コロイド科学・電池産業など、様々な学術および産業分野で液体の化学状態(結 合・組成)の解析手法が必要とされている。X線光電子分光(XPS)は化学状態を決定する一般的 な手法であるが、近年では真空中で溶液を封止するための環境セルを用いて、XPSの溶液測定が可 能となっている。この環境セルには、真空隔壁と電子透過窓を担う光電子検出窓(窒化シリコン膜) を有しているが、電子の平均自由行程の短さからその膜厚を数 nm まで小さくする必要がある。本 研究では、ガスクラスターイオンビーム(GCIB)を用いて、SiNx 膜の照射損傷を抑制した状態で のエッチングを行い、SiNx 膜を数 nm までの極薄化を行う。GCIB により極薄化した窒化シリコン 膜の耐圧性試験を行った結果、Ar⁺ beam でドライエッチングした場合と比較し、その耐圧性は保 持されることを確認した。我々は GCIB の低損傷照射効果が SiNx 膜に対しても有効であることを 実証した。

1. 序論

X線光電子分光(XPS)は、分子の結合状態 や化学組成を決定するための強力な分析手法 であり、近年では真空中で溶液を封止するた めの環境セル(Fig.1)を用いて、XPSの溶液 測定が可能となっている^{1,2}。この環境セルを 構成する最重要パーツが、封止された溶液か ら発生した光電子を取り出すための「光電子 検出窓」である。一般的に光電子の固体中に おける平均自由工程は数nmと非常に小さく、 この窓の膜厚も同等またはそれ以下にする 必要がある。上記より、より薄い膜厚で、よ り高い耐圧性を有する光電子検出窓が"高性 能である"と言える。R. Endo et. al.は膜厚 5nm の自立窒化シリコン (SiNx) 膜を光電 子検出窓として、実験室レベルの XPS 装置 で溶液測定に成功した²。しかし、膜厚 5 nm の SiNx 膜でも生成された光電子の最大 10% @1kVしか透過できず、仮にそれを2nmま で薄化できればその透過率は 40%まで増加 し、飛躍的な検出感度向上が期待できる。

一般的に自立 SiNx 膜は、Si 基板上に SiNx 膜を低気圧気相化学成長法(LPCVD 法)に より成膜しその後 Si 基板の一部をバックエ ッチングすることにより作製される。しかし ながら、LPCVD 法で作製できる SiNx の最小 膜厚は 3 nm 程度である。 Atomic layear deposition (ALD)により1層単位で SiNx の膜 厚を制御する方法も考えられるが、LPCVD 法よって作製された SiNx 膜とその化学組成 などが異なる。またウェットエッチングでは、 5nm以下のSiNx 膜厚の作製は均一性の観点 から困難である。上記より、自立 SiNx 膜を ドライエッチングする事が極薄化には最適 であると考えられるが、Ar⁺ beam 照射では、 バルクに照射損傷を与え、それによる機械特 性の劣化が考えられる。

そこで我々はガスクラスターイオンビーム (GCIB) を用いた SiNx 膜の極薄化を検討 している。ここで、GCIB とは数千個の分子 がファンデルワールス結合で塊になったビ ームである³。GCIB は一般的に数 keV まで 加速されるが、分子一個当たりのエネルギー は数 eV まで低下し、超低エネルギー照射と なる。一方、固体表面との衝突時には分子の 多体衝突により瞬間的に高温・高圧領域が形 成され、高い反応促進効果を示す。また、ALE とは、試料表面に反応性ガスを吸着・反応さ せ、その反応層をエッチングすることで原子 層オーダーでの膜厚制御する技術である。

本研究では、GCIB と ALE を組み合わせ (GCIB-ALE)、GCIB 照射の低損傷照射効果 を利用し機械特性の劣化を抑制しながら、 SiNx 膜厚の精密制御する技術を開発する。 また、GCIB 照射によりエッチングされた極 薄 SiNx 膜の耐圧性試験を行う。

Fig. 1 Environmetal cell for XPS solution measuremet

Fig. 2 Photoelectron energy vs transmittance with various thickness of SiNx film

2. 実験方法

2.1 GCIB 照射

GCIB は、数千個の分子の塊をイオン化・加速 し、ターゲットに照射する技術である。クラス ター分子は、数百 μ mのピンホールに 0.5-2 MPaの圧力を印加し、高真空中に噴射するこ とで形成可能である。そのクラスター分子は 電子衝突法によりイオン化され、加速電極に より数 keV~数+ kV まで加速される。ALEの ための反応性ガスは、ニードルバルブを介し て導入され、分圧制御が可能である。装置構成 に関しては、参考文献4 を参照されたい。ま た、SiNx 膜は LPCVD 法により作製され、そ の膜厚は 200 nm である。

2.2 SiNx の原子層エッチング

本研究では、ALE のための反応性ガスとして、金属の ALE に一般的に用いられるアセチ ルアセトン (Hacac)を使う。本実験の ALE プ

(ii) Hacac evacuation

Evacuation time: 100 s

(iii) O2-GCIB irradiation

Beam current: 1800 nA Irradiation time: T (s)

(iv) Self-limiting of etching

Fig. 3 Atomic layer etching process in the experimence

ロセスを Fig. 3 に示す。最初に反応性ガスを 導入し、分子を SiNx 表面に吸着させる(Fig. 3 (i))。次に雰囲気に残留した反応性ガスを排気 し(Fig. 3 (ii))、 O_2 -GCIB 照射により反応層を 除去する(Fig. 3 (iii))。反応層が除去されると エッチングは自動的に停止する(Fig. 3 (iv))。 上記のプロセスを繰り返すことで、原子層エ ッチングを進行させる。

2.3 耐圧性試験

SiNx メンブレンの耐圧性試験法は以下のと おりである。NW のブランクフランジの中心 に直径 1.2 mm の貫通穴を作製し、その上に TEM grid を Torr seal を使って接着する (Fig. 4)。反対側はNWのチューブ継手を使い、 チューブにはコンプレッサを接続する。コン プレッサの圧力計を確認しながら印加圧力を 大きくし、メンブレンが破断したときの圧力 をその耐圧性とする。Torrseal を使うことで TEM grid に高い圧力を印加しても、リークす ることなくメンブレンに圧力を印加すること が可能である。本実験で使用した SiNx メンブ レンの膜厚は 5 nm であり、その面積は 25 µm 角である。

Fig. 4 (a) photograph of pressure resistance test.(b) Sealing TEM grid on flange by Torrseal.

3. 結果·考察

3.1. Hacac の SiNx 膜に対するエッチング援用 効果の確認

我々は、Hacac が SiNx 膜の反応性エッチン

グに有効か検討した。照射チャンバーに Hacac gas (分圧: 1.0×10^3 Pa)を導入しながら O₂-GCIB を照射し、段差系でエッチング深さを測 定した。その結果を Fig. 5 に示す。Hacac ガス を導入しなかった場合エッチング深さは確認 されなかったが、Hacac gas を導入した場合そ のエッチング深さは飛躍的に向上した。これ より Hacac ガスは SiNx に対してエッチング 援用効果があることが確認された。

Fig. 5 Acceleration voltage of O₂-GCIB vs etching depth of SiN_x films with Hacac vapor.

Fig. 6 Contact angle at each irradiation condition

次に、このエッチングメカニズムを検討し た。Hacac ガス雰囲気化で Ar-GCIB を照射し た結果、エッチングは確認されなかった。この とき加速電圧は 5 kV, 照射量は 1.0×10¹⁶ ions/cm²、イオン化電圧は 50 V である。上記 より、O₂-GCIB 照射により SiNx 表面に形成さ れた窒酸化層が反応性エッチングに関わって いると考えられる。我々は、各条件で SiNx 膜 に GCIB を行い、その表面の水に対する接触 角測定を行った。その結果を Fig. 6 に示す。 O₂-GCIB 照射後ではその接触角は極端に低下 したが、その表面に対して Hacac を導入しな がらAr-GCIBを照射すると接触角は向上した。 一方 Ar-GCIB のみを照射した場合には、その 接触角はほとんど変化しなかった。上記より、 Hacac は O₂-GCIB 照射によって形成された窒 酸化層と反応しエッチングが生じていると考 えられる。Fig. 6 (iii)の接触角の向上は、オリ ジナルの SiNx 膜(接触角 50-60°)が露出し たことによる効果だと考えられる。

3.2.O₂-GCIB と Hacac を用いた原子層エッチ ング

ALE は、表面反応層のみエッチングが生じ、 その層が除去されるとエッチングは自己停止 する。このことを実証するために、Fig.3のプ ロセス(iii)の GCIB の照射時間 T を制御し照

Fig. 7 Fluence of the O₂-GCIB vs EPC

射量を変化させ、エッチング深さの違いを検 討する。この時、 O_2 -GCIB の加速電圧 5 kV, ALE サイクル数は 300 回である。その後エッ チング深さを測定し、1 サイクル当たりのエッ チング深さ (Etching per Cycle: EPC)を算出 した。 その結果を Fig. 7 に示す。これより、 1 cycle の O_2 -GCIB 照射が増加しても、EPC はほとんど変化していないことが分かる。 我々は、本プロセスで、ALE の自己停止を確 認した。しかしながら、上記で示した O_2 -GCIB と Hacac gas を用いた原子層エッチングは反 応性に乏しく、EPC コンマÅである。今後は より反応性の高い吸着ガス (ex: hfac)を用い て、EPC をより大きくし、制御性の高い ALE を目指す。

3.3. GCIB 照射により極薄化された SiNx 膜の 耐圧性試験

Fig. 4 に示す試験方法を用いて、GCIB によ って極薄化された SiNx メンブレンの耐圧性試 験を行った。膜厚 5 nm の自立 SiNx メンブレ ン(25 μ m 角)を有する TEM grid を購入し、そ のメンブレンへ、Hacac gas を導入しながら O₂-GCIB を照射しエッチングを行った。この 時、加速電圧は 5 kV, イオン化電圧は 50 V で ある。SiNx メンブレンの膜厚は、照射量(エ ッチング量)を調節することにより制御され

Fig. 8 Pressure resistance of ultra-thin films fabricated by O_2 -GCIB and Ar^+ beam

る。その結果を Fig. 8 に示す。GCIB でエッチ ングした場合、400 eV Ar⁺ beam でエッチング した場合と比較し、高い耐圧性を示している。 我々は GCIB の低損傷照射効果が SiNx 膜に対 しても有効であることを確認した。

3.4. グラフェン転写による SiNx 膜の導電性 確保

溶液セルを用いて XPS 溶液測定を行う場合、 チャージアップは重要な問題になる。我々は 絶縁体である SiNx 膜上にグラフェンを転写す ることによる導電性確保を行う。一般的にグ ラフェンは SiO2 上に密着性よく転写可能なこ とが分かっている。そこで我々は、O2-GCIB を 用いて SiNx 膜表面を酸化させ、その窒酸化膜 上にグラフェンを転写することを検討した。 ディジタルマイクロスコープでその表面を観 察した結果を Fig.9 に示す。ここで O2-GCIB の 加速電圧は 5 kV、照射量は 1.0×10¹⁵ ions/cm² である。GCIB 照射の場合、未照射の場合と比 較し、グラフェンの剥離を抑制できているこ とが分かる。我々は、O₂-GCIB 照射が SiNx 膜 とグラフェンの密着性向上に有効であること を確認した。

Fig. 9 Graphene transfer to SiNx with and without O_2 -GCIB irradiation

4. 結論

本研究では、GCIB を用いた SiNx 膜の原子 層エッチングおよび、GCIB によって極薄化さ れた SiNx 膜の耐圧性試験を行った。Hacac gas を導入しながら、 O_2 -GCIB を照射した結果、 エッチング深さの増大が確認された。接触角 測定の結果から、 O_2 -GCIB 照射により形成さ れた窒酸化層が Hacac と反応していると考え られる。また、それによって、極薄化された SiNx メンブレンの耐圧性試験を行った。その 結果、Ar⁺ beam でドライエッチングした場合 と比較し、耐圧性を保持できることを確認し、 GCIB の低損傷照射効果の SiNx メンブレンに 対する有効性を確認した。今後は、GCIB 照射 時の分子構造の変化を、MD シミュレーショ ンによって解析し、耐圧性保持のメカニズム 解明を検討している。

謝辞

本研究をご支援くださいました公益財団法人 京都技術科学センターに深く感謝申し上げます。

参考文献

- T. Masuda, H. Yoshikawa, H. Noguchi, T. Kawasaki, M. Kobata, K. Kobayashi, and K. Uosaki, *Appl. Phys. Lett.*, **103**, 111605, (2013).
- R. Endo, D. Watanabe, M. Shimomura, and T. Masuda, *Appl. Phys. Lett.*, **114**, 173702, (2019).
- I. Yamada, J. Matsuo, N. Toyoda, and A. Kirkpatrick, *Mat. Sci. and Eng.: R*, 34, 231 (2001).
- N. Toyoda and K. Uematsu, *J. Jpn. Appl. Phys.* 58, SEEA01 (2019)